
Soĕware Development (2500)
Lectures 2 and 3: Java: First Steps

M.R.C. van Dongen

September 29, 2010

Contents

1 Overview
ăese notes correspond to the đrst part of Chapter 1 from “the” book but there’s no need to read the
book to understand the notes. In addition these notes đll in some gaps which are not explained in the
book. Some of the presentation about Chapter 1 is different from the book. ăis is a deliberate choice,
which should allow you to study the theory from a different point of view. By the end of these notes you
should be able to

• explain the purpose of a Java class,

• understand the difference between Java source and bytecode đles,

• turn a Java class into Java bytecode with the javac compiler,

• execute the Java bytecode with the java application launcher,

• appreciate why types are useful,

• know Java’s primitive types,

• write basic variable declarations and method deđnitions,

• use primitive type and string literals, and

• add comments to your programs.

1

..source đle. compiler. bytecode.

virtual machine #1

.

virtual machine #n

Figure 1: How Java works.

2 How JavaWorks
Figure ?? is a graphical representation of how Java works. ăe following explains Figure ?? in further
detail.

Source: You start by writing one or more Java source đles. You may create a Java source code đle
using any text editor of your choice. However, each source đle should be plain text. If you’re using
drjava then drjava will make sure that your đles are saved as plain text.

Compiler: You compile each source đle using a Java compiler. Each source đle consists of one ormore
Java classes. Compiling any given source đle turns the classes in the source đle into a class Ėle. ăe
extension of class đles is ‘.class’. Each class đle contains a Java bytecode representation of the
corresponding class. If ⟨source⟩.java is your Java source đle then you compile it by executing
the command ‘javac ⟨source⟩.java’. Alternatively: use drjava.

When compiling your source đle, thejavac anddrjava compilersmain complain about certain
errors. If they do complain then youmust đx these errors and recompile until all errors have gone.
For example, javac and drjavamay complain about syntax errors and certain kinds of logic er-
rors. In addition theymay outputwarningmessages. Usuallywarningmessages are related to logic
errors which may result in run-time errors. It is your task to resolve all errors. Lazy programmers
prefer to ignore warning messages — they đnd it easier that way. Usually, this ignorance requires
a dear price in the form of run-time errors. Good programmers resolve errors and warnings. (As
part of this course you are also expected to resolve all your errors. If you don’t then you will
lose marks.) Finally, note that the ability to compile your source programs does not provide any
guarantee that your program is correct:

‘Compiling can only show the presence of errors, not their absence.’
Adapted from Edsger W. Dijkstra

Bytecode: ăe output of the javac drjava compilers is low-level Java bytecode, which can be ex-
ecuted on any device capable of running java. ăe Java bytecode may be viewed as low level
instructions which can easily be translated to machine instructions for most modern computer
processors.

2

Virtual machines: You can now execute the Java bytecode on any device that has a Java virtual ma-
chine (). Here a Java virtual machine is a program that can interpret/run Java bytecode. To
start the  on your computer, you run java ⟨Main Class⟩, where ⟨Main Class⟩ is the class
that contains “the”method main. Alternatively, youmay use drjava to launch your application.

Js come in three main Ĕavours:

Interpreters: ăese s emulate the  instruction set by interpreting the  instructions.

J compilers: ăis class is the class of just-in-time compilers. A  compiler compiles the  instruc-
tions to native code at runtime prior to executing the resulting native code.

Ahead-of-time compilers: ăis class precompiles the entire Java application into native code before
executing the resulting native code.

ăe main advantage of using Java bytecode in combination with s is that this makes Java
programs very portable. For example, you develop your Java application once and can run it on any
machine that has a . ăis portability aspect is best characterised by the following:

Write once, run anywhere.

3 Code Structure
Figure ?? depicts the code structure of a Java source đle (.java extension). ăe source đle contains a
class, and the class consists of two methods. Each method consists of statements.

..

source đle

.

class deđnition

.

method 2
statement
statement

.

method 1
statement

Figure 2: Code structure in Java.

Having studied how Javaworks at an abstract level, we shall now study an example that shows how
Java works at the source code level. In our example we shall create a class called Dog that deđnes a

3

method called bark that lets Dog objects “bark.” Further on, we shall implement another class that uses
the Dog class.

ăe following is an example of a source đle called Dog.java. ăe source đle deđnes a single class,
which is called Dog. Note that the name of the class starts with an uppercase letter. ăis is a convention:
all class names start with an uppercase letter.

..
public class Dog {
␣␣␣␣public void bark() {
␣␣␣␣␣␣␣␣System.out.println(”Bark”);
␣␣␣␣␣␣␣␣System.out.println(”Arf”);
␣␣␣␣}
}

.
Java

• ăe text ‘public class Dog’ on the đrst line starts the deđnition of the class. ăe text ‘Dog’
determines the name of the class. ăe opening brace following ‘Dog’, the closing brace on the last
line, and the text inside the braces deđnes what’s in the class.

Each Java source đle should deđne at least one class — usually there is one class per source đle.
Since our example has only one class — it’s called Dog — our Dog class goes in the source Ėle
Dog.java.

ăe main class in the source đle should have the same name as the base name of the source đle.
Here the base name of a đle is the name of the đle without the extension. For example, the base
name of Dog.java is Dog.

• A class consists of methods and attributes. Here the attributes of a class/object are its variables.
ăe discussion of attributes is postponed until some other lecture. In our example class there is
one method called bark. ăe barkmethod goes in the class Dog.

ăe text ‘public void bark()’ in ourDog class deđnes the visibility, thename, the return type,
and the formal parameter list of an instance method. Methods may always be used in the class that
deđnes them. A method’s visibility determines whether the method may also be used outside the
deđning class. If a method’s visibility is public, which it is in our case, then the method may also
be used outside the deđning class. ăename of themethod isbark. ăe return type of themethod
is void, which indicates that the method does not return any value. ăe formal parameter list of
the method is empty, which indicates the method does not take any parameter — parameters are
also referred to as arguments. Finally, the method bark is a Dog instance method, which means
you can only use themethod in combinationwith a Dog object reference. We’ll get to that in a few
moments. Each Dog object is an instance of the Dog class, hence the phrase “instance method.”

ăe symbols ‘�’ at the start of the lines are called visible space symbols. ăey are commonly used in
textbooks to make space characters explicit but they do not occur in real source đles. Each visible
space in the example corresponds to a real space character in the Java source đle.

ăe reason for adding the extra spaces at the start of the lines in the body of the class, is to empha-
sise that the barkmethod is part of the Dog class. By adding the extra space characters, you can

4

recognise the structure of the source đle by looking at the layout of the source đle — as opposed
to parsing the text from leĕ to right, which is much, much more difficult. Usually, programmers
add 2–4 spaces for each extra nesting level. For this course you are expected to do the same. If
you don’t, you will lose marks.

• ăe bark method contains statements. In the example there are two statements, which output
the texts Bark and Arf, each on a line of its own. ăe spell ‘System.out.println(⟨string⟩
)’ outputs the text ⟨string⟩ to standard output.

It is common practice to start each class name with an uppercase letter and each method name with a
lower case letter. ăis convention makes it easier to distinguish class identiđers from other identiđers.

4 More about Classes
Let’s assumewe alsohave the following class deđnition,which is stored in a sourceđle calledNoise.java.
ăis time we’re omitting the visible spaces.

..
public class Noise {

public static void main(String[] args) {
// Create a new Dog object.
Dog barney = new Dog();
// Make dog object bark.
barney.bark();

}
}

.
Java

ăe class Noise deđnes a method called main. ăe text inside the braces of main is called the body
of main. Before looking at the body of themethod main, it is important to notice that the deđnition of
the method uses the keyword ‘static’. ăis makes the method main a class method. It is recalled that
instance methods may only be used in combination with object references and the dot notation. Class
methods are different. ăey are used without object references.

ăeclassmethodmain is very important because everyJavaprogramstarts by executing thismethod.
ăe statements in the body of main (1) create a new Dog object, (2) assign the resulting Dog object refer-
ence to the Dog object reference variable barney, and (3) call the Dog object’s instance method bark(
). ăe following explains this in more detail.

1. Create a new Dog object: ăis is done by calling the Dog constructor method: using new Dog(
). ăe actual Dog object is stored in a part ofmemory which is known as the heap. ăe expression
‘new Dog()’ creates the dog object on the heap and returns a reference to the object. ăe
assignment results in copying the Dog object reference (the right hand side of the assignment
operator) into the memory cells which store the value of the variable dog (the leĕ hand side of
the assignment operator). Youmay think of the Dog object reference as a ‘remote control’ that may
be used to tell the newly created Dog object what to do.

5

2. Assign the resulting Dog object reference to the Dog object reference variable barney: By do-
ing this we can use barney’s Dog object reference — the remote control — to control the newly
create Dog object.

3. Call the object’s barkmethod: ăis is done using the construct ‘barney.bark()’. To under-
stand how this works, we have to understand the difference between class and instancemethods.

Class methods: Methods that have ‘static’ as part of their return type are called classmethods.
For example, themethod ‘main’ in the Noise class is a class method. Calls to class methods
always look like

‘⟨class name⟩.⟨method⟩(⟨actual parameter list⟩)’ .

Instance methods: Instance methods of a given class can only be called in combination with
objects that are deđned in the same class. Instance method deĖnitions do not involve the
Java keyword ‘static’. For example, the method bark in the Dog class is an instance
method. Calls to instance methods always look like

‘⟨object reference⟩.⟨method⟩(⟨actual parameter list⟩)’ .

Intermezzo: ăe calls of the form ‘System.out.println(⟨string⟩)’ in the Dog class
are instance method calls. ăe instance method is called println. ăe object reference
variable is System.out, which is Java speak for a class attribute (variable) called out of a
class called System. For the moment you may forget about attributes.

Having studied the difference between class and instance methods, we can now see that bark
is deđned as an instance method in the Dog class. For example, the method is deđned without
referring to the Java keyword ‘static’. Furthermore, the method is called in combination with
a Dog reference (barney).

Since barney is a Dog object reference variable it is allowed to use this instance method. Using
our remote control analogy, each instance method call is a channel on a  and barney owns
(barney’s value is) a  remote control that allows you to view these channels. You may carry
out a given instance method call by selecting the corresponding instance method channel on the
remote control. ăis works as follows. For each possible Dog instance method call (for each pos-
sible channel) there is a button on barney’s remote control that lets us call the method remotely
(select the channel by remote control). Since ‘bark()’ is a possible instance method call, bar-
ney’s remote control has a button for selecting this instance method call.

• ăe text on this button (the number of the channel) is ‘bark()’.

• ăe button on the remote control has a similar shape as a dot (‘.’).

• ăe button and the text on the button are called ‘.bark()’.

• Pressing thebutton ‘.bark()’ onbarney’s remote control results in executing ‘barney.bark(
)’.

6

Summarising, ‘barney.bark()’ lets barney’s Dog object carry out the instance method call
‘bark()’ remotely.

Remember that the program javac turns a source đle into Java bytecode. Also remember that the
Java virtual machine () runs the bytecode. Let’s assume we use the two as follows.

..
$ ls
Dog.java Noise.java
$ javac Noise.java
$ ls
Dog.java Dog.class Noise.java Noise.class
$ java Noise
Bark
Arf
$

.
Unix Session

By running the  java as ‘java Noise’ you tell java that Noise is the main class. ăe đrst
thing the (java)will do is load theđleNoise.class and look for thedeđnitionof the classNoise.
Since Noise is themain class, the  starts looking for themethod main in that class and execute your
application by executing the statements in the body of the method main.

All Java programs start by executing a class method public static void main(String[]
args). ăe class which this main is in is called themain class. In our example, ourmain class is Noise.

5 Types and Declarations

5.1 Motivation
Java is a strongly typed language. In short this poses restrictions on thekinds of operands that are allowed
as part of expressions and the kinds of arguments that are allowed as arguments of methods. You are
only allowed to use expressions/operands/arguments that have types which make sense. One of the
advantages of strongly typed languages is that they help the programmer avoid certain kinds of errors:
you cannot compare apples and oranges. Should the programmermake such an error, then the compiler
will detect the error and inform the programmer about it.

Note that PHP is not a strongly typed language. ăe following example should demonstrate this.
Notice that the error on the second line only manifests itself at runtime when the third line is being
executed. Needless to say, a program like this won’t impress potential customers whose income depends
on applications like this.

..
$s = ”SELECT author FROM BOOKS”;
$s = 1; // ???
$result = mysql_query($s); // D’oh!

.
Don’t Try this at Home

As already mentioned, Java is strongly typed. ăe following snippet, which is the Java equivalent
of the previous PHP example, should make the advantages of types clear. When you try to compile this

7

example, the javac compiler will detect the error in Line 2 at compile time and report the error. In addi-
tion it will refuse to produce a class đle. By informing the programmer about the error, the programmer
will now notice the error. ăis allows him to đx the error before any run-time damage can be done.

..
String s = ”SELECT author from BOOKS”;
s = 1; // D’oh!
Query q = new Query(s);

.
Java

5.2 Variables
Tohelp the compiler determine the type of the variables in your program, Java requires that you declare
each variable. Each variable declaration requires the name and the type of the variable. In addition,
Java requires that you provide the return type of your methods as well as the names and types of formal
parameters.

Variable declarations come in two Ĕavours:

• ăeđrst kind is the simplest form. All it does is state the type andnameof the variable. ăe follow-
ing example involves (1) the declaration of an integer called expression and (2) an assignment
of an expression to the variable. Here the declaration does not initialise the variable.

..
int expression;
expression = 1 + 2;

.
Java

• ăe second form combines declaration and initialisation. ăe following example, which is equiv-
alent to the previous example, shows how to write this kind of declaration.

..
int expression = 1 + 2;

.
Java

5.3 Methods
As already pointed out, there are two kinds ofmethods: classmethods and instancemethods. You deđne
a classmethodby adding the keyword ‘static’ before the return type in themethoddeđnition. Method
deđnitions of instance methods don’t have the keyword ‘static’ before the return type. ăe following
provides the general syntax for method deđnitions.

..
⟨visibility modifier⟩ ⟨static option⟩
⟨return type⟩ ⟨name⟩ (⟨formal parameter list⟩) {

⟨body of method⟩
}

.
Java

For the moment you may assume that you may only write ‘public’ for ⟨visibility modiđer⟩. Using
‘public’ makes the method visible (read usable or callable) anywhere. Here anywhere includes the class
that deđnes the method and classes which are outside the deđning class. ăe text ⟨static option⟩

8

is either ‘static’ or nothing: ‘’. By using ‘static’ you deđne a class method and by omitting it you
deđne an instance method. ăe text ⟨return type⟩ determines the return type of the method. It can
be any existing Java type, the name of a class, or ‘void’. Existing Java types may be ‘int’ (integer),
‘char’ (character), and so on. If ⟨return type⟩ is ‘void’ it means that themethod does not return any
result. ăe text ⟨formal parameter list⟩ is a comma-separated list of items of the form ‘⟨type⟩
⟨name⟩’. Here ⟨type⟩ determines the type of ⟨name⟩ in ⟨body of method⟩. Each ⟨name⟩ in the list
should be different. Finally, ⟨body of method⟩ is the body of the method. It consists of statements and
declarations.

ăe following example shows two instance methods called ‘add’ and ‘compute’. ăe method ‘add’
returns an int. ăe other method does not return any value. Both methods take two int parameters.

..
public
int add(int fst, int snd) {

int result;
result = fst + snd;
return result;

}

public
void compute(int first, int second) {

String announcement = ”And the result is: ”;
int sum = add(first, second);
System.out.print(announcement);
System.out.println(sum);

}

.
Java

5.4 Primitive Types
ăe simplest types in Java are its primitive types. Primitive types don’t involve objects. ăere are three
kinds of primitive types: numbers, characters, and Booleans.

Numeric: ăe numeric primitive types are subdivided in integers (whole numbers) and Ĕoating point
numbers (fractional numbers).

Integral: ăe integer types are byte, short, int, and long.
Floating point: ăe Ĕoating point types are float, and double.

Characters: Characters are used to represent text.

Booleans: Boolean values are used to represent truth values, yes/no, on/off, two-state valued things,
and make decisions.

5.4.1 Numeric Types

Table ?? list Java’s primitive numeric types.

9

Integral Types

Name Storage Minimum Value Maximum Value

byte 8 bit -128 127
short 16 bits -32,768 32,767
int 32 bits -2,147,483,648 2,147,483,647
long 64 bits -9,223,372,036,854,775,808 9,223,372,036,854,775,807

Floating Point Types

Name Storage Minimum Positive Value Maximum Positive Value

float 32 bits ±1.4 × 10−45 ±3.43 × 1038

double 64 bits ±4.9 × 10−324 ±1.80 × 10308

Table 1: Primitive numeric types in Java.

5.4.2 Rounding

It is important to realise the consequences of Ėnite representation: an n-bit primitive type cannot rep-
resent more than 2n different values. For most day-to-day applications an int should suffice for
“counting”. If 32 bits isn’t enough, then use a long. If 64 bits isn’t enough, then you may have to use
a BigInteger, which is an object type. Finally, Ĕoating point computations usually result in round-
ing errors. For example, the largest and smallest positive double values are Double.MAX_VALUE =
21024 − 2971 andDouble.MIN_VALUE = 2−1074. Still, subtracting Double.MIN_VALUE fromDou-
ble.MAX_VALUE results in Double.MAX_VALUE.

A common error is that beginning Java programmers use the wrong methods for certain kinds of
integer computations. For example, they use the class method pow from the Math class for exponentia-
tion. Just by looking at the type signature of the method you can tell that this method should never be
used for integer exponentiation: it is static double pow(double a, double b). ăere is
even a comment in the JavaDoc documentation (http://download.oracle.com/javase/1.4.
2/docs/api/java/lang/Math.html) stating that

If both arguments are integers, then the result is exactly equal to themathematical result
of raising the đrst argument to the power of the second argument if that result can in fact
be represented exactly as a double value.

In short you cannot use this method to implement general integer exponentiation.

5.4.3 Representation

Java’s integral types are represented as two’s complement integers. ăeoretically, the two’s comple-
ment representation support signed and unsigned integers. However, Java only supports signed inte-
gers. Before continuing, lets remind ourselves what it means for a bit sequence to be a two’s complement
integer.

10

5.4.4 One’s Complement

ăe one’s complement of a bit sequence is computed by ęipping each bit. Here Ĕipping a bit, b, means
turning it into its complement, 1 − b. ăis turns a 1 into a 0 and a 0 into a 1.

5.4.5 Two’s Complement

In Java an n-bit integers is represented using the two’s complement format.

Non-negative: ăe value of a non-negative n-bit int is represented by a 0 followed by n − 1 bits. ăe
value of the resulting bit sequence is as per usual, so the bit sequence 01010000 represents the
number 26 + 24 = 64 + 16 = 80

Negative: Negative values are represented as follows. First you compute the absolute value and repre-
sent it in binary using n-bits. Next you take the one’s complement of the bit sequence. Finally,
you add one (ignoring the leĕ-most overĔow bit).

ăe largest possible number is represented by a zero followed by n − 1 ones. ăis bit sequence repre-
sents the number 2n−1 − 1. A bitsequence represents a negative number if (and only if) it starts with
a one. ăe smallest possible number is represented by a one followed by n − 1 zeros. ăis bit sequence
represents the number −2n−1. We have 2n−1 negative, 2n−1 − 1 positive, and 1 zero value. In total
there are 2n possible values.

ăe following example shows how to get the 32-bit two’s complement representation of −1. First
take the representation of absolute value of−1:

Representation of abs(-1)

B3 B2 B1 B0

00000000 00000000 00000000 00000001

Next take the one’s complement:

One’s Complement

B3 B2 B1 B0

11111111 11111111 11111111 11111110

Finally, add 1:

Add 1

B3 B2 B1 B0

11111111 11111111 11111111 11111111

11

5.4.6 Characters

ăe Java type for representing characters is called ‘char’. Java characters are based onUnicode, which
is a character standard which supports up to 65536 different characters. It is recalled that 65536 =
216 = 28 × 28. An 8-bit byte can represent 28 values. ăis explains why chars are represented using
two bytes.

5.4.7 Booleans

Java represents truth values using the type ‘boolean’. ăe type boolean has only two values, which
are written in the Java language as ‘true’ and ‘false’. ăe Java language does not specify how how
to represent boolean values and how many bits should be used per boolean value.

5.5 Primitive Type Literals
Clearly, knowing about Java’s primitive types is not enough to work with them. For example, which
values may you assign to their corresponding variables, what do you type to express these values, and
what kind of expressions are you allowed to form with them? In this section we shall address the second
question, namely, what are the primitive type literals? Here a literal is an explicit data value in a program.

5.5.1 Integer Literals

If there is no ambiguity then integer literals are represented as decimal numbers. ăe following shows
an example.

..
short s = 100;
int i = 0;
long l = -100;

.
Java

ăis is the default representation and Java assumes that each such literal is an int. However, the
value must be in the right range, so byte s = 128 is not allowed.

Occasionally, you may need to write long literals that cannot be represented using a 32-bit two’s
complement value. Adding an ‘l’ or ‘L’ to the end of a decimal number makes the resulting sequence an
explicit long literal. ăe following provides an example.

..
long l1 = 2147483647; // Largest possible int.
long l2 = 2147483648; // Too large: not allowed.
long l3 = 21474836481; // Also too large.
long l4 = 2147483648l; // Allowed but not clear.
long l5 = 2147483648L; // Perfect!

.
Java

ăe previous example shows that it is difficult to see the difference between the letter ‘l’ and the
digit ‘1’. For this reason you should always prefer the ‘L’ to the letter ‘l’.

Java also lets you write integral literals in octal (base 8) and in hexadecimal (base 16). Octal literals
start with a zero (sigh): ‘022’ corresponds to ‘18’. Hexadecimal literals start with the string ‘0x’ (zero

12

then x): ‘0x12’ corresponds to ‘18’. Starting hexadecimal literals with ‘0X’ is also allowed. However,
using the uppercase X is not as clear as using the lowercase x.

5.5.2 Double Literals

By default, Java assumes that Ĕoating point literals are doubles. ăe following are possible ways to
write Ĕoating point literals.

• ‘⟨sign option⟩⟨digit sequence⟩.⟨digit sequence⟩’. ăese literals have the “expected”
value, so ‘-10.5’ corresponds to−101

2 .

• ‘⟨sign option⟩⟨digit sequence⟩.’ or ‘⟨sign option⟩.⟨digit sequence⟩’ ăese lit-
erals also have the “expected” value, so ‘-10.’ corresponds to−10 and ‘1.’ corresponds to 1.

• ‘⟨base⟩⟨exponent⟩’, where ⟨base⟩ is given by

‘⟨sign option⟩⟨digit sequence⟩.⟨digit sequence⟩’ ,

and ⟨exponent⟩ is given by

‘⟨E or e⟩⟨sign option⟩⟨digit sequence⟩’ .

ăis form corresponds to scientiđc notation. Let b be the number before the ‘E’ or ‘e’ and let e
be the number aĕer the ‘E’ or ‘e’. ăe value of the literal corresponds to b × 10e. So ‘1.5E2’
corresponds to 1.5 × 102 = 150.

• Variations of scientiđc notation are also possible. ăis allows you to write literals like ‘-1.E0’,
‘.1E0’, and so on.

5.5.3 Float Literals

Adding an ‘f’ or ‘F’ at the end turns a Ĕoating point literal into a ‘float’. If you need a float, then the
letter ‘f’ or ‘F’ is required. ăe reason why this is required is that in general double literal, which is the
default, cannot always be converted to a corresponding float value without loss of precision. Likewise,
adding a ‘d’ or ‘D’ at the end states that the literal is a ‘double’. ăe following shows some examples of
Ĕoating point literals.

..
double d1 = 1.0E10; // Grand.
double d2 = -1.0E-10D; // Grand.
double d3 = -.1; // Grand.
float f1 = 1.0; // Not allowed.
float f2 = 1.00F; // Grand.
float f3 = -1.0E-10F; // Grand.

.
Java

13

5.5.4 Character Literals

Regardless of the kind, character literals are always written inside two single quote symbols (’). ăere
are three main classes of character literals:

Normal characters: Here we have anyUnicode character inside the quotes. ăe character that is repre-
sented by the literal is given by the character that is inside the quotes. ăe following are possible
example: ’a’, ’B’, ’ñ’, ….

Escape sequences: ăis class of literals start with a backslash aĕer the đrst quote. Examples are ’\n’
(newline), ’\t’ (tab), ’\”’ (double quote), ’\” (single quote), ’\\’ (backslash), ….

Unicode escapes: ăese literals are of the form’\u⟨hexadecimal number⟩’, where ⟨hexadecimal
number⟩ represents the number of the Unicode character in hexadecimal (base 16). Examples
are ’\u00F1’ (ñ), ’\u0108’ (Ĉ), and so on. For this course you may forget about this class of
character literals.

5.5.5 Boolean Literals

We’ve already seen the boolean literals: they’re given by ‘false’ and ‘true’.

5.6 Object Types
ăe last class of types is the class of object types. Any type which is not primitive is an object type. If
⟨class⟩ is the name of the class that deđnes the object, then ⟨class⟩ is the type of the object.

Remember that Java does not allow you to deal directly with objects. Instead you deal with them
indirectly through the use of object reference variables. ăe type of a ⟨class⟩ object reference variable
is written ⟨class⟩. It is an commonly acceptedJavaprogrammer’s convention to start class nameswith
uppercase letter. Object reference variable declarations are written as per usual:

..
Dog cerberus = new Dog();
Cat felix = new Cat();

.
Java

6 Strings
Strings are đrst-class citizens in Java. ăe type of strings is ‘String’. ăe uppercase ‘S’ suggests that
strings are objects. Indeed, this is true. String literals start and end in double quotes (”). Inside the
quotes you have a (possibly empty) sequence of characters. Here the characters are what’s “in” the single
quotes of character literals. Notice that each string literal involves the creation of a String object. ăe
following is an example with Strings.

14

..
String str1 = ”Hello world!”;
System.out.print(str1);
String str2 = ”String str1 = \”Hello world!\”;”;
System.out.println(str2);
System.out.print(”System.out.print(str1);”)

.
Java

Strings are objects, so it is reasonable to expect that theString class deđnes some instancemethods.
Indeed, the following are two useful instance methods:

int length(): Returns the number of characters in the string.

char charAt(int pos): Returns the character at position pos in the string. As is usual, the đrst
position is 0 and the last position is its length minus 1.

ăe following provides an example.
..

String str = ”text”;
char second = str.charAt(2);
int length = ”hi”.length();

.
Java

Here the second assignment assigns the character ’x’ to second. ăe last assignment assigns the
value 2 to length.

ăe last statement is interesting because it demonstrates that object reference variables are not always
needed for instance method calls. More generally, an object reference value is enough. Since a string lit-
eral is a String (object) reference value, you canwrite ‘”hi”.length()’. Whenwewrote ‘barney.bark(
)’, the expression ‘barney’ also “counted” as an object reference value. However, the value which was
used for the object reference value was the (current) value of the object reference variable barney. ăis
is exactly the same mechanism as for int expressions:

When you write a variable where a value is expected then you get the (current) value of
that variable. Anonymous Programmer

ăe following should demonstrate this once more. Of course, the values in the đrst two statements
are int values, and the values in the last three statements are object reference values.

..
int first = 1; // Use the literal value.
int second = first; // Use the (current) value of the variable first.

String quote = ”To be or not to be”; // Use the literal value.
System.out.print(”Here’s a famous quote: ”); // Use the literal value.
System.out.println(quote); // Use the (current) value of the vari-
able quote.

.
Java

15

7 Comments
Java has two kinds of comments.

• ăe đrst class of comments are one liners. ăey start with ‘//’ and last till the end of the line.

• ăe next class of comments is usually used for multi-line comments — but they can be used on a
single line. ăese comments start with ‘/*’ and last until the next occurrence of the sequence ‘*/’.
Here it is assumed that ‘/*’ and ‘*/’ are outside the double quote symbols of string literals.

Figure ?? provides an example with several comments.

String spuds = ”potatoes”; // Everybody loves them.
String meat = ”steak”; // Vegetarians look other away.
String drink = ”beer”; // Drink this sensibly.
String more = ”wine”; // Drink this sensibly too.
/*
* Invite guest. Wine and dine guest.
* Make sure guest gets home safe.
*/

Host host = new Host();
Guest guest = new Guest();
host.invite(guest);
guest.eat(meat);
guest.drink(drink);
guest.eat(spuds);
guest.drink(more);
host.ring(”021 4272255”); // Ring Yellow Cabs

Figure 3: Comments in Java.

8 For Monday
Study the notes, implement the program that makes dogs bark, compile the required source đles, and
“run” the resulting byte code.

16

